Denial of Service Attack on Automotive CAN Networks
1. Objectives
The automotive CAN networks are particularly vulnerable to denial of service attacks, since the priority-based arbitration scheme used by CAN networks allow a node to assert a “dominant” state on the bus indefinitely and cause all other CAN nodes to back off.
In this lab, students will practice to launch denial of service attacks via the ODB II port, and observe how the car will respond.
2. Pre-lab Reading
There are two excellent articles on security of automotive CAN networks. “Experimental Security Analysis of a Modern Automobile” by Kosher et al. [1] experimentally evaluates security issues on a modern automobile and demonstrates the fragility of the underling system structure. The authors demonstrate that an attacker can infiltrate virtually any Electronic Control Unit (ECU) and completely circumvent a broad array of safety-critical systems.
In the paper “Adventures in Automotive Networks and Control Units” [3], Miller and Valasek demonstrate how an attacker is able to control the steering, braking, acceleration and display on two different vehicles. The paper describes all technical information needed to reproduce such attacks. Some of the examples in this lab are derived from this paper.
3. Background
2.1 CAN (Controller Area Network):
	The modern automobile may have hundreds of electronic control units (ECU) for various sub-systems and the total amount of wires inside an automobile may be more than 5 miles long. Besides, communication among subsystems becomes more frequent and more environmental data should be shared by multiple devices. All complexity, heavy weight and frequent communication result in the development of Controller Area Network (CAN) Bus.
[image:]
Figure 1 Automotive CAN Networks

CAN is a central networking system that connects all modules working throughout the vehicle so that they can work together to run effectively and efficiently as automobiles have become more technologically advanced and intelligent. For example, the engine reports the vehicle’s speed to the transmission, which in turn must tell other modules when to shift gears. Connecting all these individual modules to each other became too complex, so a central networking system became necessary to efficiently run the vehicle. The CAN bus is one of these central networking protocol used in vehicles without a host computer.
A vehicle typically has two CAN buses, a high speed CAN bus operating at up to 1Mbps and a low speed CAN bus operating at up to 125 Kbps, see Figure 1. Powertrain system, including engine control, transmission control, gear control etc., is usually connected by the high speed bus. The body control system, including door control, seat control, light control, etc. which deal with passenger comfort and convenience, is usually connected by the low speed bus. The dashboard and OBD II bridge two networks.
For the physical layer, a twisted pair multidrop cable is specified with a length ranging from 1,000m at 40Kbps to 40m at 1Mbps. The maximum payload of a message is 8 bytes, and all messages carry a cyclic redundancy code (CRC). Each message has an identifier, which can be interpreted differently depending on the application or higher-level protocols used. All nodes on the network receive each message and then decide whether that identifier value is of interest.
For protocol layer, CAN is a carrier-sense, multiple-access protocol with collision detection and arbitration on message priority (CSMA/CD+AMP). CSMA means that each node on a bus must wait for a prescribed period of inactivity before attempting to send a message. And CD-AMP means that collisions are resolved through a bit-wise arbitration, based on a preprogrammed priority of each message in the identifier field of a message. The higher priority identifier always wins bus access. That is, the last logic-high in the identifier keeps on transmitting because it is the highest priority. Since every node on a bus takes part in writing every bit "as it is being written," an arbitrating node knows if it placed the logic-high bit on the bus.

[image:]
Figure 2. Standard CAN: 11-Bit Identifier

There are totally four message frames that can be transmitted on a CAN bus:
1. Data frame. It is the most common message type, and comprises the arbitration field, the data field, the CRC field, and the acknowledgment field. The arbitration field contains an 11-bit identifier and the RTR bit, which is dominant for data frames. Next is the data field which contains 0 to 8 bytes of data, and the CRC field which contains the 16-bit checksum used for error detection. Last is the acknowledgment field.	 (Shown as Figure 2)
2. Remote frame. The intended purpose of the remote frame is to solicit the transmission of data from another node. The remote frame is similar to the data frame, with two important differences. First, this type of message is explicitly marked as a remote frame by a recessive RTR bit in the arbitration field, and secondly, there is no data.
3. Error frame. It is a special message that violates the formatting rules of a CAN message. It is transmitted when a node detects an error in a message, and causes all other nodes in the network to send an error frame as well. The original transmitter then automatically retransmits the message. An elaborate system of error counters in the CAN controller ensures that a node cannot tie up a bus by repeatedly transmitting error frames.
4. Overload frame. This frame is similar to error frame in format and is transmitted by a node which becomes too busy. The primary use of this frame is to provide for an extra delay between messages.

By the definition of CAN and basic frames of CAN message above, it is easy to find where the problem of CAN is. The messages on CAN bus are transmitted to all nodes and each node would accept the message by identifier it is interested or drop it. No one consider where the packet comes from. That is, no authentication is applied during CAN network. It is fine in the past because the network is isolated before and authentication free helps reduces circuit delay. However, the network nowadays supplies more accesses for device to join in which breaks down the isolation. Once one device is hacked, for example media player, the data stream read from CD consisting code-injected messages would moves into network and jeopardize the system deeply because each device would trust every message as long as it has appropriate identifier the device is interested. By the development of wireless communication like Bluetooth and telematics units, the attack would happen covertly. Although on the opposite, no clue where the message comes from makes it hard to understand how network works when sniffing the CAN network without prior knowledge and this does protect whole system to some extent, some previous research has shown that outsiders are getting more and more knowledge of CAN and would fully understand it in the future. It’s just matter of time.
4. Testbed
The automotive network testbed consists of a software package and a hardware platform that can be used for testing and reverse engineering of automotive networks. It provides a packet monitor and a customized packet transmitter that enables students to verify the packet functionalities by injecting the monitored packets to network.
4.1 Software - OCTANE (Open Car Testbed and Network Experiments)
OCTANE can be downloaded directly from OCTANE website at octane.gmu.edu. The download file is an archive of an exe file and a msi file. You can use either of them. When the file is downloaded, double click on it to start the installation process, see reference [4] for detailed installation instruction and software manual.
OCTANE is a software tool which brings cyber-physical security research to researchers and students. It reduces the barrier of entry into the security research and teaching of automotive networks by providing a software package and a hardware framework for the reverse engineering and testing of automotive networks. It provides a platform for security research and teaching by replicating the interactions between the hardware components and control software of the systems so that the user can focus on the security aspects of the automotive network instead of the tool configuration and setup.

[image:]
Figure 3. OCTANE: Transmit Packet

[image:]
Figure 4. OCTANE: Bus Monitor

OCTANE is composed of both a software package and hardware framework. The package supports monitoring (shown as Figure 3) and transmitting (shown as Figure 4) CAN protocols and includes many features to enable researchers to reverse-engineer protocols more easily and use shareable XML files that encode these protocols. In the hardware configuration part, OCTANE enables the users to test interactions between automobile devices in reality and test proposed operations in a real automobile environment as well.

4.2 Hardware Platform
For safety reason, we strongly recommend to set up the hardware platform with a stationary car. One way is to elevate the car on jack stands, so that the car cannot move forward or backward but the throttle can be applied to bring the wheels to certain speed.
You can connect a laptop to the car’s standard On-Board Disgnostics II (ODB-II) port (see Figure 4) with a CAN-to-USB interface cable (see Figure 5) to interact with the car’s CAN network.
[image:]
Figure 4. The OBD II port of a car

Alternatively, the instructors can buy some parts and cable and set up an experimental lab network, see reference [2] for detailed instructions.

[image:]
Figure 5 A typical simple USB-CAN Interface cable

5. Experiments
The bus access in CAN is event-driven and takes place randomly. If two nodes try to occupy the bus simultaneously, access is implemented with a nondestructive, bit-wise arbitration. Nondestructive means that the node winning arbitration just continues on with the message, without the message being destroyed or corrupted by another node. The allocation of priority to messages in the identifier is a feature of CAN that makes it particularly attractive for use within a real-time control environment. The lower the binary message identifier number, the higher its priority.

An identifier consisting entirely of zeros is the highest priority message on a network because it holds the bus dominant the longest. Therefore, if two nodes begin to transmit simultaneously, the node that sends a last identifier bit as a zero (dominant) while the other nodes send a one (recessive) retains control of the CAN bus and goes on to complete its message. A dominant bit always overwrites a recessive bit on a CAN bus.

The allocation of message priority is up to a system designer, but industry groups mutually agree on the significance of certain messages. For example, a manufacturer of motor drives may specify that message 010 is a winding current feedback signal from a motor on a CAN network and that 011 is the tachometer speed. Because 010 has the lower binary identifier, messages relating to current values always have a higher priority on the bus than those concerned with tachometer readings.

Therefore, it is very easy to launch a Denial of Service attack on the CAN bus by continuously transmitting packets with the ID of 000. Since these packets have the highest priority, no other packets will be able to be transmitted.

5.1 Launch a denial of service attack before the car is started.

[image:]
Figure 6. Change the Setting for Tester Present

Activate the sniffing feature by selecting BM from the menu and then select the setting tab. Under the Tester Present column, input CAN identifier with “000”, CAN Message with “0000000000000000”, and Time between (ms) with “1”, see Figure 6

Select the Transmit/Receive tab and then click on Tester Present button on Monitor Bus to activate the tester. When it is activated the box next to the button is green and when it is deactivated it is red, see Figure 7.

When the tester present is activated, the tester will continuously transmit packets with ID “000” every 1 ms. Observe the Monitor Bus and check what packets are being transmitted. This basically causes a “Denial of Service” attack. No other CAN packets can be transmitted.

Now, try to start the car. Most cars won’t start, because when turning on the ignition, the security module and the Engine Control Unit (ECU) have to talk. If they can't talk, nothing will happen.
[image:]
Figure 7. Activate Tester Present

5.2 Launch a denial of service attack during driving.
	
When the car is “at speed”, repeat the same exercise as you did in Section 5.1 and observe how the car will respond.

When the CAN bus is under the denial of service attack (flooded with packets with ID “000”) at some point during driving, most vehicles will treat it like a faulty bus. Fault tolerance will take over to make sure each subsystem shut down correctly without hazard for the passengers. Note, some vehicles may behave quite differently, when they are under the denial of service attacks.

References
[1] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage, “Experimental Security Analysis of a Modern Automobile,” IEEE Symposium on Security and Privacy, Oakland, CA, May 16–19, 2010.
[2] P. Borazjani, C. Everett, and D. McCoy. "OCTANE: An Extensible Open Source Car Security Testbed." Proceedings of the Embedded Security in Cars Conference. 2014.
[3] Charlie Miller and Chris Valasek, “Adventures in Automotive Networks and Control Units,” DefCon 21, July, 2013, Las Vegas, NV, USA. http://illmatics.com/car_hacking.pdf
[4] http://octane.gmu.edu/help/octane-quick-guide.pdf, “OCTANE Quick Start Guide,”

image6.jpeg

image7.jpeg
Bus Monitor

dit
Packet dertiy o, ECUID BU Pioty DIC s Data . - | [Traname /Receive | Setings XL Fiter | Fecene Fite]
[) 0 0 s 2 0000000000000 112168
() 0 0 s 2 0000000000000 112158
o 0 0 s 2 0000000000000 112148 Receive Settings Transmit Settings
() 0 0 s 2 0000000 1121
() 0 0 s 2 00000000 112128
000 0 [8 2 00 00 00 00 00 00 00 00 12118 [Vebose Transmi Ouiput
() 0 o s 2 0000000000000 112108
() 0 0 s 2 0000000000000000 11205
w 0 0 s 2 0000000000000000 112088 Tester Present
() 0 0 s 2 0000000000000 112078
000 0 [8 2 00 00 00 00 00 00 00 00 112068 G ke
o0 o 0 s 2 0000000000000000 112058)
) 0 0 s 2 0000000000000 112048
o 0 0 s 2 0000000000000000 112038 Length o Message
000 [} 0 8 2 0000000000000000 112028 E_ ®
() 0 0 s 2 0000000000000000 112018
() 0 0 s 2 0000000000000000 112003 iliicssge
() 0 0 s 2 0000000000000000 111953 TR0
000 0 0 8 x 00 00 00 00 00 00 00 00 111983 o Lo R
[0 0 8 12 0000000000000 111973 4 RS
() 0 0 s 2 0000000000000 111963 L
) 0 0 s 2 0000000000000000 111953
[o o s 2 0WN0NNNN 111 -

Monitor Bus On Filter Loaded: None.

image8.jpeg
Bus Monitor =]
i
Packet Identity No. ECUID ECU Priorty DLC Fiags Data 0. 7 Time | | Transmit / Receive | Settings | XML Fier | Receive Fier
o [[s |2 0000000000000000 112168
w o o s o2 wonBO0NG iz Sop i
o0 0 0 T 2 0000000000000000 112148
o0 0 0 8 2 0000000000000 112138 Receive erace: (CAN.Vitual#0 Chanmel Kva: =
o0 0 0 " 2 0000000000000000 112128
o0 0 0 o 12 0000000000000000 112118 R
o 0 0 (I} 0000000000000000 112108
o0 0 0 8 2 0000000000000000 112098
o 0 0 8 2 0000000000000000 112088
o i 0 . T Seeced Pocket | [Trnemt Modfed Paket]
000 0 0 8 2 00 00 00 00 00 00 00 00 112068 Jipomt. od Pacet It Modied Packe,
o0 0 0 (I 0000000000000000 112058
oo 0 0 () 0000000000000000 112048 Transn taface: (CANViual 0 Chomnel Ofvat ~
o0 0 0 8 2 0000000000000000 112038
o0 0 0 8 2 0000000000000000 112028
o0 0 0 8 2 0000000000000000 112018
o 0 0 (INT 0000000000000000 112003 P
o0 0 0 Fulll 0000000000000000 111993 =
o0 0 0 T 2 0000000000000000 111983
o0 0 0 8 2 0000000000000000 111873
o0 0 0 " 2 0000000000000000 111963 l
o0 0 0 o 12 0000000000000000 111953
o0 0 0 (B[} 000NN T+

Monitor Bus On Filter Loaded: None.

image1.jpeg
Engine Transmission Traction Antilock Suspension Gearbox
Control Control Control Brakes Control Control
High Speed CAN Bus
Dashboard opBlI
Low Speed CAN Bus
Door Seat Lights Mirror Airbag Environment
Control Control Control Adjustors Control Control

image2.png
11-bit

Identifier

0...8 Bytes Data

image3.png

image4.png
7| 8

Identty No. ECUID ECU Proty ~ DLC Fags
240

image5.jpeg

